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a b s t r a c t

We propose a novel method for alleviating the stringent CFL condition imposed by the
sound speed in simulating inviscid compressible flow with shocks, contacts and rarefac-
tions. Our method is based on the pressure evolution equation, so it works for arbitrary
equations of state, chemical species etc. and is derived in a straight-forward manner. Sim-
ilar methods have been proposed in the literature, but the equations they are based on and
the details of the methods differ significantly. Notably our method leads to a standard Pois-
son equation similar to what one would solve for incompressible flow, but has an identity
term more similar to a diffusion equation. In the limit as the sound speed goes to infinity,
one obtains the Poisson equation for incompressible flow. This makes the method suitable
for two-way coupling between compressible and incompressible flows and fully implicit
solid–fluid coupling, although both of these applications are left to future work. We present
a number of examples to illustrate the quality and behavior of the method in both one and
two spatial dimensions, and show that for a low Mach number test case we can use a CFL
number of 300 (whereas previous work was only able to use a CFL number of 3 on the same
example).

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we focus on highly non-linear compressible flows with shocks, contacts and rarefactions, for example the
Sod shock tube. Traditionally these types of problems are solved with explicit time integration (Runge–Kutta methods, ENO,
WENO etc. see e.g. [10,11,5]). Although these methods produce high quality results, small time steps are required in order to
enforce the CFL condition of information moving only one grid cell per time step. While this is understandable for very high
Mach number flow where juj; ju� cj and juþ cj are all of similar magnitude, it is too restrictive for flows where the sound
speed, c, may be much larger than juj. Moreover some flow fields might have both high Mach number regions where shock
waves are of interest as well as low Mach number regions where the material velocities are important. In this case, a large
number of time steps are required if one is interested in the motion of the fluid particles over an appreciable distance in the
low Mach number regions. Thus, it can be quite useful to have methods that avoid the stringent CFL time step restriction
imposed by the acoustic waves and instead use only the material velocity CFL restriction (albeit one would expect some loss
of quality because of the implicit treatment of the acoustic waves).

To alleviate the stringent CFL restriction, [6] proposed both a non-conservative and a conservative scheme. Their non-
conservative scheme builds on the predictor–corrector type scheme of [16] to derive an elliptic pressure equation quite
similar to ours, but for an adiabatic fluid. Our method is similar in spirit to [6,13–15] where the calculation is divided into
. All rights reserved.
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two parts: advection and non-advection. The advection terms are treated with explicit time integration, and thus the CFL
restriction on the material velocity remains. Whereas one can use a standard method such as ENO in solving the advection
terms, we found that when coupled to an implicit solution of the pressure equations (that is inherently central-differenced)
the standard ENO method sometimes leads to spurious oscillatory behavior. Thus we designed a new ENO method geared
towards a MAC grid discretization of the data, making it more similar to incompressible flow. We call this MAC-ENO or
MENO. The remaining non-advection terms are solved using an implicit equation for the pressure using a standard MAC grid
type formulation. Since the MAC grid is dual in both velocity and pressure (noting that the MAC grid pressure needs to live at
cell faces for flux based methods), one needs to interpolate data back and forth.

We base the derivation of our method on the pressure evolution equation as discussed in [2], thus making it valid for
general equations of state, arbitrary chemical species etc. Thus, our derivation has fewer assumptions and is more
straight-forward than previous work, especially those based on preconditioners. For example, [13] makes two critical
assumptions in their derivation of the implicit equation for pressure. In approximating the derivative of momentum they
discard a Dt rp

q term, and their pressure evolution equation is missing the advection term. Also, our method is fully conser-
vative and thus shocks are tracked at the right speed. We present a number of traditional examples for highly non-linear
compressible flows including the Sod shock tube, interacting blast waves, and in two dimensions we show Flow Past a Step,
Double Mach Reflection of a Strong Shock and a Circular Shock. We also demonstrate that the method works well for low
Mach number flow, taking an example from [7] where the authors obtain reasonable results with a CFL number of 3. Notably,
our method allows a CFL number of 300 (two orders of magnitude more).

2. Numerical method

Let us consider the one dimensional Euler equations,
q
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with q being the density, u the velocity, E the total energy per unit volume and p the pressure. The flux term can be separated
into an advection part and a non-advection part,
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We first compute the Jacobian of the advection part
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All the Jacobian’s eigenvalues are equal to u, and it is rank deficient with left eigenvectors of ðu;�1;0Þ and ðE=q;0;�1Þ and
right eigenvectors of ð1;u;0ÞT and ð0;0;1ÞT . Since all the characteristic velocities are identical, we can apply component wise
upwinding to F1ðUÞ without having to transform into the characteristic variables first (as in [4]). Moreover, this advection
part only requires a time step restriction based on u.

2.1. Implicit pressure update

The multi-dimensional Euler equations are
q

qu

qv

qw

E

0
BBBBBBBB@

1
CCCCCCCCA

t

þ

qu

qu2

quv

quw

Eu

0
BBBBBBBB@

1
CCCCCCCCA

x

þ

qv

quv

qv2

qvw

Ev

0
BBBBBBBB@

1
CCCCCCCCA

y

þ

qw

quw

qvw

qw2

Ew

0
BBBBBBBB@

1
CCCCCCCCA

z

þ

0

rp

r � ðp~uÞ

0
BB@

1
CCA ¼ 0;
where~u ¼ ðu;v ;wÞ are the velocities. Here we have advection components in each of the three spatial dimensions, and they
can be handled as outlined previously in a dimension by dimension fashion (as in [11]).

We apply a time splitting as is typical for incompressible flow formulations, first updating the advection terms to obtain
an intermediate value of the conserved variables ðqÞ�; ðquÞ� and E�, and afterward correct these to time tnþ1 using an implicit
pressure. Since the pressure does not affect the continuity equation, qnþ1 ¼ q�. The non-advection momentum and energy
updates are
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ðq~uÞnþ1 � ðq~uÞ�

Dt
¼ �rp ð2Þ
and
Enþ1 � E�

Dt
¼ �r � ðpuÞ: ð3Þ
Taking motivation from the standard incompressible flow formulation (which uses the momentum equation to derive an
implicit equation for pressure), we divide Eq. (2) by qnþ1,
~unþ1 ¼~uH � Dt
rp
qnþ1 ð4Þ
and take its divergence to obtain
r �~unþ1 ¼ r �~uH � Dtr � rp
qnþ1

� �
: ð5Þ
In the case of incompressible flow, we would set r �~unþ1 ¼ 0, but for compressible flow we instead use the pressure evolu-
tion equation derived in [2],
pt þ~u � rp ¼ �qc2r �~u: ð6Þ
If we fix r �~u to be at time nþ 1 through the time step (making an OðDtÞ error), we can substitute in Eq. (5) to get
pt þ~u � rp ¼ �qc2r �~uH þ qc2Dtr � rp
qnþ1

� �
; ð7Þ
which is an advection–diffusion equation with a source term. Discretizing the ~u � rp advection term explicitly, using a for-
ward Euler time step, and defining the diffusive pressure at time tnþ1 as is typical for backward Euler discretization, gives
after rearrangement
pnþ1 � qnðc2ÞnDt2r � rpnþ1

qnþ1

� �
¼ ðpn � ð~un � rpnÞDtÞ � qnðc2ÞnDtr �~uH: ð8Þ
Note we have discretized qc2 at time tn. This equation can be further simplified by using the advection equation for pressure,
pa � pn

Dt
þ~un � rpn ¼ 0
to obtain
pa ¼ pn � ð~un � rpnÞDt; ð9Þ
where pa is an advected pressure which can be computed using HJ ENO [9] or semi-Lagrangian advection [1]. Substituting in
Eq. (8) we obtain
pnþ1 � qnðc2ÞnDt2r � rpnþ1

qnþ1

� �
¼ pa � qnðc2ÞnDtr �~uH: ð10Þ
We discretize this equation at cell centers (which is typical for advection–diffusion equations) and thus need to define veloc-
ities at cell faces forr �~uH. Consider two adjacent grid cells, one centered at Xi and one centered at Xiþ1. We divide these into
four regions Ci;L;Ci;R;Ciþ1;L;Ciþ1;R, where ðCi;R [ Ciþ1;LÞ represents a dual cell (see Fig. 1). Then Eq. (2) for Ci;R is
ðquÞnþ1
i;R � ðquÞ�i;R

Dt
¼ �

pnþ1
iþ1=2 � pnþ1

i

Dx=2
: ð11Þ
Similarly for Ciþ1;L we have
ðquÞnþ1
iþ1;L � ðquÞ�iþ1;L

Dt
¼ �

pnþ1
iþ1 � pnþ1

iþ1=2

Dx=2
: ð12Þ
Fig. 1. Two neighboring cells with the dual cell shaded.
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Adding these equations together and dividing by ðqi þ qiþ1Þ yields
Fig. 2.
a good
betwee
ûnþ1
iþ1=2 � û�iþ1=2

Dt
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pnþ1
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where ûiþ1=2 ¼
ðquÞi;RþðquÞiþ1;L

qiþqiþ1
¼ ðquÞiþðquÞiþ1

qiþqiþ1
can be thought of as a density-weighted face velocity, and q̂iþ1=2 ¼ qiþqiþ1

2 is the cell face

density. Note that we currently use ðquÞi;R ¼ ðquÞi and ðquÞiþ1;L ¼ ðquÞiþ1, although higher order approximations could be
used. Using this discretization on Eq. (10) yields
I þ qnðc2ÞnDt2GT 1
q̂nþ1 G
� �� �

pnþ1 ¼ pa þ qnðc2ÞnDtGT~̂uH; ð14Þ
where G is our discretized gradient operator and �GT is our discretized divergence operator. This is solved to obtain pnþ1 at
cell centers.

In summary, instead of using an equation of state (EOS) to find the pressure for use as a flux in both conservation of
momentum and energy, we use Eq. (14). The EOS still plays a role because it is used to determine the time tn pressures which
factor into pa and is also used to determine ðc2Þn. In Fig. 2 we show an example calculation of the pressure for our Sod shock
tube example. In the picture we plot the pressure using the equation of state at time tn, i.e. pn, the pressure calculated using
Eq. (14), i.e. our pnþ1, and also the pressure calculated using the EOS applied to the conservative variables at time tnþ1, i.e.
pnþ1

EOS . Notice in the figure that the pressure calculated from Eq. (14) is a good approximation to what the pressure will be
at the next time step (i.e. pnþ1

EOS ) emphasizing the implicit nature of our scheme. pn is the pressure used in a typical explicit
scheme.

It is interesting to note that this derivation does not require an ideal gas assumption, and hence should be general enough
to work with any EOS (even multi-species flow [2]).

2.2. Updating momentum and energy

To obtain the correct shock speeds we use a flux based method and thus need the pressure at cell faces for Eqs. (2) and (3),
and the velocity at cell faces for Eq. (3). Applying conservation of momentum to the control volumes Ci;R and Ciþ1;L (see Fig. 1)
gives
Dui;R=Dt ¼ ðpi � piþ1=2Þ=ðDxqi;R=2Þ
and
Duiþ1;L=Dt ¼ ðpiþ1=2 � piþ1Þ=ðDxqiþ1;L=2Þ:
The constraint that the interface remain in contact implies that Dui;R=Dt ¼ Duiþ1;L=Dt, which can be used with the aforemen-
tioned equations to solve for the pressure at the flux location Xiþ1=2 as
piþ1=2 ¼
piþ1qi þ piqiþ1

qiþ1 þ qi
: ð15Þ
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A blow-up of the pressure plot for example 6.1.1 at time tðnÞ ¼ :149 s and tðnþ 1Þ ¼ :15 s, showing that the implicit pressure calculated in Eq. (14) is
approximation to what the pressure will be at time tnþ1 emphasizing the implicit nature of our scheme. pn is also plotted to emphasize the difference
n using an implicit and explicit pressure.
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For solid wall boundaries, we reflect the pressure and density values as usual, and then use Eq. (15). The cell face velocity is
computed via Eq. (13), and piþ1=2ûiþ1=2 is used in Eq. (3).

3. Time step restriction

The eigenvalues of the Jacobian of the advection part of the flux are all u. Since we solve the acoustic component implic-
itly, we no longer have a severe time step restriction determined by the speed of sound c, and all that remains is to find an
estimate for the maximum value of juj throughout the time step. Simply using un is not enough, since e.g. Sod shock tube
starts out with an initial velocity identically zero and thus un would imply an infinite Dt. To alleviate this, we add a term
that estimates the change in velocity over a time step similar to what was done in [8]. Assuming the flow is smooth, we com-
bine conservation of mass and momentum to give an equation for the velocity, ut þ u � ruþ rp

q ¼ 0. The temporal update of
this equation would advect velocity based on the u � ru term, but also increase the velocity by an amount equal to rp

q . In one

spatial dimension, we use this to estimate the velocity at the end of the time step as
jun jmaxþ

jpx j
q Dt

Dx

� �
and the CFL condition

becomes
Dt
junjmax þ

jpx j
q Dt

Dx

 !
6 1: ð16Þ
This is quadratic in Dt with solutions
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q Dx
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q Dx
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:

As the lower limit is always non positive and Dt P 0, we only need to enforce the upper bound. As px ! 0, both the numer-
ator and denominator vanish and thus we obtain a more convenient time step restriction by replacing the 2nd Dt in Eq. (16)
with this upper bound to obtain
Dt
2
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þ
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Note that this is not linear in Dx, but as Dx! 0 we obtain a more typical CFL condition Dt < Dx
jun jmax

. In two spatial dimensions
our CFL follows along the lines of [8]’s equation 95 and is given by:
Dt
2
jujmax
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All of our examples are stable for CFL number a ¼ :9, and all of our examples were unstable for a ¼ 1:3. Some examples (e.g.
example 6.1.8) blow up for a ¼ 1.
4. Modified ENO scheme

When using traditional ENO methods for the advection part of our equations (as in [11]), we obtained excessive spurious
oscillations. This seems to be related to our dual cell center and MAC grid formulation, thus we device a new ENO scheme
which better utilizes that dual formulation. We call this Mach-ENO or MENO. The main idea is to replace the advection veloc-
ity with the MAC grid value defined at the flux in question, i.e. û. The lowest level of the divided difference table is typically
constructed with the physical fluxes, i.e. qu;qu2 and Eu for F1ðUÞ in Eq. (1). A dissipation term is added for the local and
global Lax-Friedrichs versions. Consider constructing an ENO approximation for the flux at Xiþ1=2. Locally, we would use a
divided difference table with base values corresponding to the physical fluxes plus or minus the appropriate dissipation.
Our modification is to replace qjuj;qju

2
j and Ejuj with qjûiþ1=2;qjujûiþ1=2 and Ejûiþ1=2 leaving the dissipation terms unaltered.

Note that ûiþ1=2 is fixed throughout the divided difference table similar to the way one fixes the dissipation coefficient.
In order to validate our new MENO scheme, we compared it to the standard scheme from [11] for the standard Sod shock

tube in Fig. 3. For this problem and other fully explicit simulations the results were fairly similar, but when we ran the sim-
ulations with our semi-implicit formulation the MENO scheme performed much better, and in fact the standard ENO scheme
was not successful in producing any solution whatsoever for Fig. 11 in our examples section.

5. Time integration

While the explicit component of our update is an upwind scheme, the implicit component is centrally-differenced. This
tends to introduce more dispersive rather than dissipative errors to the solution (i.e. there is more of an imaginary compo-
nent to the eigenvalues), which suggests the use of Runge–Kutta over forward Euler.
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Fig. 3. Sod shock tube problem at t ¼ :15 s. Left: Standard ENO-LLF (Local Lax-Friedrichs) using 401 grid points (green) and 1601 grid points (red). Right:
The base 1601 grid points solution is the same as in the left figure, but the coarse grid calculation (with 401 grid points) is done with the new MENO
scheme. Velocity is shown in both figures. Both simulations were done with explicit time integration and a full characteristic decomposition in order to
demonstrate that the new ENO schemes performs similar to the old one when one is not using our new implicit discretization of the pressure. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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We use two variations of the third order TVD Runge–Kutta scheme [10] in all of our examples. The first is to perform
Runge–Kutta on just the advection part, F1ðUÞ, with only one final implicit solve for F2ðUÞ. The second variation is to carry
out both F1ðUÞ and F2ðUÞ for each Runge–Kutta stage, noting that this has three times the computational cost as far as the
implicit solution of F2ðUÞ is concerned. In general we observed better performance, especially in controlling overshoots,
when using the second variation (see Fig. 4). However, some examples (in particular the high Mach number ones) do tend
to show more oscillations (see Fig. 4, bottom). These oscillations are less predominant when combined with MENO, so we
show all of our examples with the second variation.
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Fig. 4. Numerical results comparing placing the implicit solve either inside each Runge–Kutta stage (b and d) or once after a full three stage Runge–Kutta
cycle (a and c). The top two figures show the results for a Sod shock tube problem at t ¼ :15 s, the bottom two figures show the results for a strong shock
tube problem at t ¼ 2:5� 10�6 s. Density is shown in all figures. Note the spurious overshoots when the implicit solve is not included in the Runge–Kutta
cycle (left two figures). Note that we use the standard ENO scheme from [11] (not MENO) for these four examples.
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6. Numerical results

6.1. One dimensional validation

For the one dimensional tests, we use a computational domain of [0,1], 401 grid points, and also plot a baseline solution
using 1601 grid points in the standard fully explicit ENO method as in [11]. A second order ENO was used along with the CFL
number of .5. Unless otherwise noted the maximum Mach number in each example lies within the range (.9,2.5). All units
are in S.I. Generally speaking our method is a perturbation of those proposed by [13,14] and thus demonstrates similar qual-
itative behavior. Timings are shown in Table 1. In particular note that the implicit scheme is generally more efficient than the
explicit scheme predominantly because we avoid the characteristic decomposition and can advect all three independent
variables simultaneously because they all have the same eigenvalue u. At first glance one might assume that the necessity
of a pressure Poisson equation would cancel out these efficiency gains, but practical experience shows only five or six iter-
ations of conjugate gradients is required to reach a reasonable tolerance. It is unclear whether our newly proposed semi-im-
plicit method would have these slight efficiency gains across a wider number of examples and in multiple spatial
dimensions, however for the low Mach number flow problems for which it was designed (such as example 6.1.8) it is sig-
nificantly more efficient than the explicit method.
Table 1
Wall clock times comparing the semi-implicit method with the fully explicit method, for 1-D examples. Simulations were run to the target times of each
example as mentioned in their respective figures.

Test name Semi-implicit (s) Explicit (s)

Sod shock tube 2.95 3.69
Lax shock tube 2.71 4.53
Strong shock tube 2.43 3.43
Mach 3 shock test 2.90 3.59
High Mach flow test 3.75 3.29
Interaction of blast waves (Bang Bang) 5.28 9.86
Two symmetric rarefaction waves 3.52 4.15
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Fig. 5. Numerical results of the Sod shock tube problem at t ¼ :15 s. The explicit baseline solution is plotted in red, and the solution from our method is
plotted in dotted green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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6.1.1. Sod shock tube
Our first test case is a standard Sod shock tube with initial conditions of
Fig. 6.
plotted
ðqðx;0Þ;uðx; 0Þ; pðx; 0ÞÞ ¼
ð1; 0;1Þ; if x 6 :5;
ð:125;0; :1Þ; if x > :5:

�

Our results are shown in Fig. 5, which indicate well resolved shock, rarefaction and contact solutions. Since our method is
conservative, we get the correct shock speeds. The results are comparable to that of [7,13].

6.1.2. Lax’s shock tube
Lax’s shock tube is similar in nature to Sod shock tube, except that the initial condition has a discontinuity in the

velocity:
ðqðx;0Þ;uðx; 0Þ; pðx; 0ÞÞ ¼
ð:445; :698;3:528Þ; if x 6 :5;
ð:5; 0; :571Þ; if x > :5:

�

Our results are shown in Fig. 6. Again, the results are comparable to the previous work.

6.1.3. Strong shock tube
The Strong shock tube problem poses initial conditions that generates a supersonic shock:
ðqðx;0Þ;uðx; 0Þ; pðx; 0ÞÞ ¼ ð1;0;1010Þ; if x 6 :5;
ð:125; 0; :1Þ; if x > :5:

(

Our results are shown in Fig. 7. The scheme admits some oscillations near the rarefaction wave, and we see no notable dif-
ference in simulation time when compared to the explicit simulation. With that in mind, we note that the main advantage of
the proposed method is to take time steps irrespective of the sound speed values; in cases of high Mach number flows (or
high Mach number regions of the flow – if asynchronous time integration is used), one could use a typical ENO scheme.
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6.1.4. Mach 3 shock test
The initial conditions for the Mach 3 shock test are:
ðqðx;0Þ;uðx;0Þ; pðx; 0ÞÞ ¼
ð3:857; :92;10:333Þ; if x 6 :5;
ð1;3:55;1Þ; if x > :5:

�

Our results are shown in Fig. 8. As above we do note some oscillations near the rarefaction wave.

6.1.5. High mach flow test
The initial conditions for the High mach flow test are:
ðqðx;0Þ;uðx;0Þ; pðx; 0ÞÞ ¼
ð10;2000;500Þ; if x 6 :5;
ð20;0;500Þ; if x > :5:

�

As noted in [7] the Mach number in this test can reach as high as 240. Our results are shown in Fig. 9.

6.1.6. Interaction of blast waves
Here we present a test of two interacting blast waves. This problem was introduced by [12] and involves multiple strong

shock waves. The initial conditions for the test are:
ðqðx;0Þ;uðx;0Þ; pðx; 0ÞÞ ¼

ð1; 0;103Þ; if 0 6 x < :1;

ð1; 0;10�2Þ; if :1 6 x < :9;

ð1; 0;102Þ; if :9 6 x 6 1:

8>><
>>:
We also have solid wall boundary conditions at x ¼ 0 and x ¼ 1. Our results are shown in Fig. 10 which shows that we
achieve very accurate results.



Fig. 8. Numerical results of the Mach 3 shock tube problem at t ¼ :09 s. The explicit baseline solution is plotted in red, and the solution from our method is
plotted in dotted green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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6.1.7. Two symmetric rarefaction waves
In this test there are two rarefaction waves going in opposite directions from the center of the domain. This causes very

low density regions near the center of the domain. The initial conditions for the test are:
ðqðx;0Þ;uðx; 0Þ; pðx; 0ÞÞ ¼
ð1;�2; :4Þ; if x 6 :5;
ð1;2; :4Þ; if x > :5:

�

Our results are shown in Fig. 11. Our results are comparable to that of [7,13]. Note that there is an unphysical pulse in the
internal energy field near the low pressure region, caused by overheating (see e.g. [3]).

6.1.8. Smooth flow test (mach zero limit)
The initial conditions for the zero mach limit test are given by:
uðx;0Þ ¼ 0;
pðx;0Þ ¼ p0 þ �p1ðxÞ;
p1ðxÞ ¼ 60 cosð2pxÞ þ 100 sinð4pxÞ;

qðx; 0Þ ¼ pðx; 0Þ
p0

� �1
c

q0;
where q0 ¼ 1; p0 ¼ 109 and � ¼ 103. Since the flow is smooth and there are no shocks in this test, we have used a single im-
plicit solve per time step. This test is dominated by acoustic waves (as observed in [7]). We can take time steps as large as is
permitted by our CFL condition in Eq. (17). This permits time steps three orders of magnitude greater than those permitted
by sound speed based CFL. However, as with all implicit schemes, taking too large a time step can lead to inaccurate results.
Thus, in order to get sufficient accuracy, we clamp our time step to be a fixed multiple of the explicit time step (which is
calculated using the sound speed based CFL). In Fig. 12 we use three times the explicit time step and show convergence
via grid resolution.

In a second suit of tests we show that we can increase the grid resolution without the need to refine the time step. The
timing results for this experiment are available in Table 2, where Dt remains fixed as the grid resolution goes up as high as



 20

 40

 60

 80

100

120

 0  0.2  0.4  0.6  0.8  1
 0

 500

 1000

 1500

 2000

 0  0.2  0.4  0.6  0.8  1

 0
 2e+06
 4e+06
 6e+06
 8e+06
 1e+07

 1.2e+07
 1.4e+07
 1.6e+07

 0  0.2  0.4  0.6  0.8  1
 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0  0.2  0.4  0.6  0.8  1
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320,000 grid cells. At that point the effective sound speed CFL is 300. Numerical results are plotted in Fig. 13 and Table 2
summarizes the results. In particular we note that the newly proposed implicit method permits a fixed time step all the
way up to 320,000 grid points. This allows the wall clock simulation time to scale approximately linear to the size of the
problem (since we solve the Poisson equation using conjugate gradients, which has superlinear complexity – however, note
that one only needs the solver to converge in the sense of truncation error as opposed to round-off error). On the other hand,
in explicit methods the simulation time grows quadratically, becoming impractical at 320,000 grid points. Note that since we
are not refining the time step, we do not expect to see any further convergence in the solution.

6.2. Flow past a step test

Our first two-dimensional experiment is similar to the one described in [3]. We assume an ideal gas with c ¼ 1:4. The test
domain is 3 units long and 1 unit wide, with a .2 unit high step which is located .6 units from the left hand side of the tunnel.
The initial conditions are q ¼ 1:4; p ¼ 1 and u ¼ 3 and v ¼ 0 everywhere in the domain. We apply an inflow boundary con-
dition on the left hand side of the domain, and an outflow boundary condition on the right hand side of the domain. A reflec-
tive solid wall boundary condition is applied for the top and bottom boundaries of the domain. We show numerical results at
t ¼ 4 s on a grid of resolution 120 � 40 in Fig. 14.

6.3. Double mach reflection of a strong shock

In a computational domain of ½0;4� � ½0;1�, a planar Mach 10 shock hits a reflecting boundary that lies along the bottom
wall of the domain along x 2 ½16 ;4�. The plane of the shock begins at ð16 ;0Þ and makes a 60� angle with the reflecting plane. The
left and bottom (for x 2 ð0; 1

6Þ) boundary conditions are given by the postshock condition, the right boundary by a zero-gra-
dient condition, and the top boundary is set to describe the exact motion of the Mach 10 shock. If we take ~n to be the unit
vector that lies normal to the planar shock, then the initial values are given by:
ðqðx; y;0Þ;uðx; y;0Þ;pðx; y;0ÞÞ ¼ ð1:4;~0;1Þ; preshock;
ð8;8:25~n;116:5Þ; postshock:

(
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Our method (see Fig. 15) compares well with those provided in [12], which provides a description of this example and pre-
sents numerical results comparing the performance of various methods in this problem. As is done in previous work we only
show the domain of interest (½0;3� � ½0;1�).

6.4. Circular shock test

The circular shock test has an initial condition prescribed as
ðq; u;v ;pÞ ¼
ð1;0;0;1Þ; if r 6 :4;
ð:125; 0;0; :1Þ; if r > :4;

�

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Numerical results are shown in Fig. 16. The same test was shown in [14]. Our results indicate well re-

solved shock and contact solutions along with correct speed shock calculations.
7. Conclusions and future work

We have presented a method for alleviating the stringent CFL condition imposed by the sound speed in highly non-lin-
ear compressible flow simulations. A fractional step procedure combined with the pressure evolution equation is used. The
method works for arbitrary equations of state, and in the limit as the sound speed goes to infinity it yields the Poisson
equation for incompressible flow. We also presented a Mach-ENO or MENO scheme which better utilizes a dual cell center
and MAC grid formulation. The numerical experiments on various benchmark problems for one and two dimensions indi-
cate that our semi-implicit method obtains well resolved shock, rarefaction and contact solutions. Since our method is
conservative, we also obtain correct shock speeds. The smooth flow example illustrates the ability of our method to take
significantly large time steps for low Mach number flows as compared to explicit methods. In future work we plan to ex-
tend our approach to handle two-way coupling between compressible and incompressible flows, as well as fully implicit
solid–fluid coupling.



Table 2
Timing results for smooth flow test, with Dt approximately constant. The wall clock times are shown for simulations till t ¼ 5� 10�5 s.

Grid Resolution Effective sound speed CFL Dt Wall clock time (Implicit) Wall clock time (Explicit)

3200 3 5.01e�08 63.41 s 511.67 s
32,000 30 5.01e�08 810.03 s 60498.49 s
320,000 300 5.01e�08 9976.58 s Impractical
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this article).
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Fig. 14. Numerical results showing the contour plots of density for the flow past a step test on a grid of size 120� 40 at t ¼ 4 s. Thirty contours are plotted
in the range [.2568,6.067].
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Fig. 15. Numerical results showing the contour plots of density for the double mach reflection of a strong shock on a grid of size 240 � 60 at t ¼ :2 s. Thirty
contours are plotted within the range [1.731,20.92].
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Fig. 16. Numerical results for the circular shock test on a grid of size 100 � 100 at t ¼ :25 s.
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Appendix. Boundary conditions

Fig. 14 requires the handling of inflow and outflow boundary conditions. We define Uout to be the outgoing state and Uin to
be the ingoing state. The outgoing state, Uout , is obtained by simple extrapolation whereas the ingoing state, Uin, is obtained
by attenuating Uout towards specified far-field values. After defining Uout via extrapolation, we average the primitive vari-
ables to cell flux on the boundary of the domain, and use those values to compute a characteristic decomposition. If the
pth characteristic field indicates ingoing information, then when applying the ENO scheme in this characteristic field we
use Uin for the ghost node values. Otherwise Uout is used. Note for higher order schemes boundary values will be needed
for fluxes on the interior of the domain as well, and we choose the ghost nodes (as Uin or Uout) in the same fashion.

Our ingoing state, Uin, is obtained by attenuating the extrapolated state, Uout , towards a given far-field state, Ufar . This is
accomplished by multiplying Uout with each of the left eigenvectors, attenuating if the eigenvalue in that characteristic field
indicates an ingoing wave, and then multiplying by the right eigenvector. Defining the scalar characteristic information in
each field as np ¼ LpUout , we would attenuate np towards np

far using the analytic solution of the ODE
dn=dt ¼ Kðn� nfarÞ
for time step Dt using initial data of n ¼ nout . We used an attenuation coefficient of K ¼ �:5 in our examples.
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